Putting the Plant Metabolic Network (PMN) to work for you

Kate Dreher curator

PMN/TAIR

Presentation plan

- Introduction and content overview
- Search tools and tips
- Cross-species analyses
- OMICs data visualization
- Data and software downloads
- Creating new PMN content

What is the PMN?

PMN = The Plant Metabolic Network

Created in 2008

Plant Metabolic Network

Funded by the National Science Foundation

What is the PMN?

What is in the PMN?

- Databases contain detailed information about:
 - Pathways
 - Enzymes
 - Reactions
 - Compounds
 - Genes
- Data are entered and displayed using Pathway Tools software
 - Peter Karp, et al, SRI International
- Pathways are generated through:
 - Manual curation when a curator reads scientific literature
 - <u>Computational predictions</u> made by the Pathologic software

What is in the PMN?

Databases created and maintained by the PMN

- PlantCyc, AraCyc, PoplarCyc (new in October 2009!)
- Other plant databases accessible through the PMN:

PGDB	Plant	Source	Status
RiceCyc **	Rice	Gramene	some curation
SorghumCyc	Sorghum	Gramene	no curation
MedicCyc **	Medicago	Noble Foundation	some curation
LycoCyc **	Tomato	Sol Genomics Network	some curation
PotatoCyc	Potato	Sol Genomics Network	no curation
СарСус	Pepper	Sol Genomics Network	no curation
NicotianaCyc	Tobacco	Sol Genomics Network	no curation
PetuniaCyc	Petunia	Sol Genomics Network	no curation
CoffeaCyc	Coffee	Sol Genomics Network	no curation

** Significant numbers of genes from these databases have been integrated into PlantCyc

What is in the PMN?

Most recent release of PMN databases: October 15, 2009

Database contents	PlantCyc 3.0	AraCyc 6.0	PoplarCyc 1.0
Base pathways* (no superpathways)	643	360	285
Experimentally-supported (EV-EXP)	585	299	25
Enzymes** (monomers and complexes)	10964	5501	3434
in reactions (EV-EXP) in pathways	1974	858	1
Reactions	2709	2323	1668
in pathways with enzymes (EV-EXP)	1614	829	2
Compounds	2679	2630	1363
Organisms	376	1	1***
Citations	4803	2691	903

How can I access all this information?

Searching in PMN databases

Quick search bar

- Provides access to <u>all PMN-created</u> databases
- Allows Google-based text-mining of summaries, comments, etc.
 - For example, search "plant defense"
- PMN searches:
 - Match partial words
 - Search across all fields (compound, enzyme, etc.)
 - Return a list of items grouped by data type

Searching in PMN databases

Better . . . but what about compound structures?

Keep clicking on "More Detail" – sometimes several times

Superclasses Biosynthesis -> Fatty Acids and Lipids Biosynthesis -> Choline Biosynthesis
Species Data Available for Arabidopsis thaliana.col., Glycine max., Medicago truncatula., Oryza sativa Japonica Group., Pisum sativum., Populus trichocarpa., Ricinus communis
Summary: General information: Choline is a fundamental metabolite in plants because of its contribution to the synthesis of the membrane phospholipid phosphatidylcholine, which accounts for 40 to 60% of lipids in non-plastid plant membranes [<u>Mou02</u>]. Choline is also a precursor for the formation of glycine betaine (<u>glycine betaine biosynthesis</u>) in certain plants such as spinach, where this osmoprotectant is accumulated and confers also tolerance to salinity, drought, and other environmental stresses. In addition choline has been recognized as an essential nutrient for humans [<u>MoNeID1</u>].
The choline biosynthetic pathway enables plants to decouple choline synthesis from lipid metabolism (Kennedy pathway - triacyful/ycerol biosynthesis.) and provides them with the metabolic flexibility to adapt to environmental conditions where large and variable amounts of choline are beneficial for survival [Rortein01.]
Pathway information. The first step in choline biosynthesis is the direct decarboxylation of serine to ethanolamine [<u>Bortein01</u>], which is catalyzed by a serine decarboxylase unique to plants [<u>Bortein03</u>] Ethanolamine is widely recognized as the entrance compound to choline biosynthesis.
References
Curator(9): Curator (2009). "Following the initial computational build of PoplarCyc in 2009, pathways were validated by PMN curators based on a preliminary literature search. For pathways that lacked direct experimental support, curators considered a number of factors to judge the validity of the predicted pathways including. It critical compound(s) in the pathway are found in a Populus species: 2) a Populus trichocarpa gene is predicted to catalyze a critical or unique reaction of the pathway, or 3) the pathway is expected to exist in all plants."
Datke88. Datko AH, Mudd SH. (1988) "Enzymes of phosphatidylcholine synthesis in Lemna, soybean, and canot." Plant Physiol. (1988), 88, 1338-1348.
Datke88a: Datke AH, Mudd SH, (1988) "Phosphatidylcholine synthesis. Differing patterns in soybean and carrot." Plant Physiol. (1988), 88, 854-861.
Hitz81: Hitz WD, Rhodes D, Hanson AD, (1981) "Radictracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betaine synthesis by water stressed barley leaves." Plant Physiol. (1981), 68, 814-822.
Kinney93 Kinney AJ. (1993) "Phospholipid head groups." In: Moore, TS Jr. (ed.) Lipid metabolism in plants. CRC Press Boca Raton Ann Arbor London Tokyo (1993) 259-264.
Kirk99: Kirk Pappan, Xuemin Wang "Molecular and biochemical properties and physiological roles of plant phospholigase D.* Biochimica Biophysica Acta (1999) 1430 151-166.
McNeil00: McNeil SD, Nuccio ML, Rhodes D, Shachar-Hill Y, Hanson AD (2000). "Radiotracer and computer modeling evidence that phospho-base methylation is the main route of choline synthesis in tobacco." Plant Physiol 123(1);371-80. PMID: 10806254

PMN compound pages

PMN enzyme pages

Arabidopsis Enzyme: phosphatidyltransferase

PMN enzyme pages

Arabidopsis Enzyme: phosphatidyltransferase

Enzymatic reaction of: cholinephosphotra	nsferase (phosphatidyltransferase)	4
a 1.2 discriptional + COP choice with a phosphat	idylcholine + CMP	
The reaction direction shown, that is, A + B crews (C + D versus C + D <==> A + B, is in accordance with the Enzyme Commission system.	
Reversibility of this reaction is unspecified.		
In Pathways: choice biosysthesis III., phospholaid	Pathway(s)	
cDNA's encode aminoalcoholphosphotransfera expression in yeast mutants lacking those enzy phopsphatidylalcohols although with slight dife and was also inhibited to a lesser degree by CI supporting the proposal that discriptifycens, invi- equilibrium via the reversibility of the cholmepho concluded from the Southern blotting patterns, isolated to far and confirms their localization in	T1, AdAAPT2) have been isolated from an Arabidopsis cDNA library using the AAPT cDNA from soybean as see involved in the nucleotide pathway of the biosynthesis of phosphatidylethanolamime (PE) and phosphatidylyme activities. It has been demonstrated that both AdAAPT1 and AdAAPT2 convet CDP-ethanolamine and C rences regarding the substrate preference. AdAAPT2 showed a higher preference for CDP-choline over CDP-ethanolamine and C rences regarding the substrate preference. AdAAPT2 showed a higher preference for CDP-choline over CDP-ethanolamine and C rences regarding the substrate preference. AdAAPT2 showed a higher preference for CDP-choline over CDP-ethanolamine and C sticline monophosphate (CMP) than AdAAPT1 [<u>Goode09</u>]. Both enzymes (AdAAPT1, AdAAPT2) we over as substrate in both PC and triacylighycerol biosynthesis (triacylighycerol biosynthesis), is in equilibri orphotramoferase reaction [<u>SeckW_1</u>]. AdAAPT1 and AdAAPT2 seem to represent the only aminoalcoholphos Both polypetides contain seven membrane spanning regions as shown by their hydropathy files. This finding membranes [<u>Goode09</u>]	ytcholine (PC) as demonstrated by gene DP-choline into the corresponding ethanolamine in comparison to ADAAPT1 ere able to catalyze the reverse reaction sum with PC and maintains this photnansferases in Arabidopsis as
Inhibitors (Allosteric): CMP Goode(2) Inhibitors (Unkmerch): Sa ²² Goode(2)	Inhibitors, Kinetic Parameters, etc.	Summary
Primary Physiological Regulators of Enzyme Activit	IN CMP	
time for the other of the second s	· · · · · ·	
References Geodethi Goode JH, Devey FE, (1999) "Character	scalars of animalicoholphosphotransferases from Arabidopais Malana and soybean." Plant Physiol. Bioche	m (*2001, 37.81, 445-457,
Stack#5 Stack CR, Roughan PG, Browse JA, Gar	dear SE, (1965) "Some properties of challenghosphotransferese from developing sufficient catyledons." Boot	tim Biophys Acta (1995), 833, 438-448
	<u>↑</u>	
	References	

Download <u>a complete gene</u> list

	Gene 15 dene no	me feat	ion id React	ton EC Es	stymatic activity Evidence Organism
	361-710905	J01-710900	F30H-5701	2.7.0.2 et	thanolaminephosphotransferame No Evidence Code Populus trichcospa
	201-225724	305-225724	8224-5701	2.7.8.2 #5	Chanolaminephosphotransferame No Evidence Code Populus trichcoarpa
	AT1025585	AT1625585	F004-5701	2.7.8.2 CI	IP-choline:1,2-diacylglycerol cholinerhosphotransferase EV-EIP Arab
l c	ATIOCSER	AT1025585	R220-ST01	2.7.8.2 03	holisephisphotrassferase EV-E2P Arabidopeis thalissa col
Le	AT2625585	AT1025585	F304-5761	2.7.0.2 ch	holisephorphotransferase EV-EDP Arshidopsis thalians col
_	AT1613560	AT1013560	#326-1701	2.7.8.2 CB	DP-choliseit,2-discriptycerol cholisephosphotrassferase EV-E2P area
	AT1013540	AT1013540	P304~5701	2.7.8.2 cb	holisephosphotransferase EV-ESP Arabidopsis thalians col
	AT1013560	AT1013560	R201-5701	2.7.8.2 cl	holisephosphotrassferase EV-EXP Archidogeis thalians col
	NTE. 6496.1.81	T BQ14	449 \$254-5	101 2.	7.8.2 seinoalcoholphoephotransferase EV-COMP Medicago trancatula
	WTF.32591.1.01	AT 2969	F770 8331-5	901 2.	.7.0.1 meinomicoholphosphotrameferase EV-COMP Medicago trancetula
	879.1715.1.81	AN77	13-04 8226-8	181 2.	7.8.2 aminoalcoholphosphutransferane EV-COMD Medirago trancatula
	G-63D4 AAPT1	R3N-5701	2.7.0.2 (39-0	hoiime:1,2-di	incylpiperol cholinephosphotransferase EV-E3P Giptine mex
	201-819577	302-829577	FHORCHOL-FORM	3.1.4.4 23	horgholipase D No Evidence Code Populus trichcoarps
	201-100605	JGD-180605	PHOSCHOL-RON	3.1.4.4 pt	borgholipase D No Evidence Code Populus trichcoarpe
	202-785219	302-755219	FRONCHOL-FORM	3.1.4.4 23	hospholipare D No Evidence Code Populas trichcoarps.
	201-550827	361-550827	PHOSCHOL-RON	3.1.4.4 pb	hosyholipase D No Evidence Code Populus trichocarpa
	202-415367	302-415367	FRORCHOL-ROM	3.1.4.4 38	hosyholipase 2 No Evidence Code Populus trichcoarpa
	301-559891	JG1-559891	FB00CB0L-RON	3.1.4.4 pb	hospholipase D No Evidence Cods Populus trichcoarpa
	202-763496	302-763496	F800C80L-F32F	3.1.4.4 98	hosybolipase b No Evidence Code Populue trichcoarpa
	JGE-417354	JGD-417354	PHOSCHOL-RON	3.1.4.4 ph	hospholipase D No Evidence Code Populus trichocarpa
	202-033366	405-833366	F1008C100L-F331	3.1.4.4 98	hosphollpase 5 No Evidence Code Populus trichcoarpa
	362-240457	361-240457	FROBCHOL-FOR	0.1.4.4 pb	hosyholipase D No Evidence Code Populus trichcoarpa
	202-730954	302-720956	FE00CH0L-R2N		hospholipase b No Evidence Code Populus trichcoarps
	202-578949	JGE-570949	PHOSCHOL-RON		hospholipase D No Evidence Code Populus trichocarpa
	202-037396	302-837596	PHODODOL-RON		hospholipase D No Evidence Code Populus trichcoarpa
	201-593768	JGE-593768	PHOBCHOL-FON	3.1.4.4 28	hospholipass D No Evidence Code Populus trichocarpa
	362-010176	361-010176	PROSCIOL-RON	3.1.4.4 pt	hospholipase b No Evidence Code Populus trichcoarpa
	202-781949	JGE-781949	FRONCHOL-FORM	3.1.4.4.98	borghelipsee D No Evidence Code Populus tricbocarpa
	201-011001	361-011001	PHOSCHOL-RON	3.1.4.4 pt	hospholipase 5 No Evidence Code Populus trichocarpa
	AT0016785	PLD sets	FHORCHOL-FORM	3.1.4.4 28	boopholipase 5 EV-EEP Arabidopsis thaliana col
	AT4635790	FLD delts	FBORCHOL-FON		hospholipase 5 EV-EEF Arabidopsis thaliana col
	AT9011850	FL5 gamma	PROSCHOL-\$324	3.1.4.4 38	boopholipase D EV-EXF Arabidopsis thaliana col
	AT2:040.030	PLD hets	PHOSCHOL-RON		hospholipage D EV-EEP Arabidopsis thalians col
	AT3015730	FLD alpha	F8080100L-R031		hosyholipase D XV-EXP Arabidopsis thaliana col
	AT5625370	AT5625370	PHOSCHOL-RON		hospholipase D EV-COMP Arabidopsis thaliana col
	AT4011840	AT4011040	P100821006-1020	3.1.4.4 38	hosyholipase b EV-COMP Arabidopsis thallana col
	AT4611030	AT4611050	PHOSCHOL-ROM	2.1.4.4 pt	hospholipase b EV-COMP Arabidopsis thaliana col
	AT400034D	AT4000340	F1008C100L-F001	3.1.4.4 93	hospholipase D XV-COMP Arabidopsis thallana col

Download the pathway in BioPAX format

Solf:RDF and base="http://www.plantcyc.org/1555/ABA/pathway-biopac?object=PWY-3561">
- cent Outslogy rdf abouts">
<ard catalysis637"="" imports="" off="" resource="http://www.biopan.org/winam/biopan.icenf2.cenf7/></td></tr><tr><td>- <tdfs: comment></td></tr><tr><td>This ExoPAX Level 2 output for organism Arabidopiis%32thaliana%32col, pathway choine%32thorjnthess/%32th was automatically generated from URL http://www.plantcyc.org.1555
/ARA/pathway-hopax?object%PWY-3561 on 18-Oct-2009 18:06:51. Note that all IDs are auto-generated, and are valid in the scope of this file only. If the data is regenerated at some
later time, or data for another pathway is generated from this same rite, there are no guarantees that the same IDs will refer to the same objects. To retrieve a file containing a complete lat
of pathways for this organism in BioPAX format, please visit http://biocyc.org/download-flatfles.shtml</td></tr><tr><td></r></td></tr><tr><td></www.contology></td></tr><tr><td>- <hp:catalysis.rdf.ID="></ard>
- the CONTROLLED>
- the bischemicalReaction off ID="biochemicaReaction584">
<bp datatype="http://www.w3.org/2001/OMLSchemalitring" ec-number="" rdf="">2.7.7.15</bp>
- tplff>
- the physicalEntityParticipant eff ID#'phys-ent-participant613'>
- bp PHYSICAL-ENTITY>
- <hp id="mailMolecule603" meallmolecule="" off=""></hp>
<hp:molecular.weight>164 152<ap molecular.weight=""></ap></hp:molecular.weight>
<hp>NAME rdf datatype="http://www.w3.org/2001/0MLSchema@string">phosphoryl-choine=/hp:NAME></hp>
- «hp:STRUCTURE»
 «bp chemicalStructure off ID="chemicalStructure612">
structure-formations/structure-formations/structure-formations/structure-formations/structure-formations/structure-formations/structure-formation/st structure-formation/structure-formation/structure-formation/structure-formation/structure-formation/structure-formation/structure-formation/structure-formation/structure-formation/structure-formation/structure-formation/structure-form
- «lg:STRUCTURE-DATA off datatype="http://www.wit.org/2011/2011/2011/2011/2011/2011/2011/201

Set organism viewing preferences on PlantCyc pages

View predicted or experimentally supported enzymes

Searching in PMN databases

- Search page
 - Provides more selective searches
 - Allows browsing

Searching in PMN databases

- Advanced search page
 - Allows the construction of very complex queries

In database PlantCyc	search for Compounds (2679 instances)	add a condition
insert a new search component he	ere	
2. Select fields to include in th	ne query output:	
	ne query output:	
2. Select fields to include in th Column 1		
	add a column	
Column 1		

Find all of the <u>30-carbon compounds</u> that appear as products in reactions

Construct query

n database PlantCyc	💌 search for	Compounds (2679 instances)	add a cond
A/here	Chemical-Formula	-Contigs -Plaunic Organize does not contain the substring	C30
or not and not	Categorie Control Categorie Categorie Or Prosthetic Group Comment Common Name Component Of Orests Deta Source FEAMC-ID Gibbs-0	Pathwey Pathwey SuperV is not a substreng of People 1 Polymer AB Gen AB Gen is not similar to (regular expression) contains the substring (case-sensitive) is a substring of (case-sensitive) is not a substring of (case-sensitive) is accurate (case-sensitive) is not a substring of (case-sensitive)	
	Hos-No-Structure? Molecular-Weight Nomes		_

Find all of the <u>30-carbon compounds</u> that appear as products in reactions

Construct query

In database	PlantCyc	*	search for	Compounds (2679 instances)	~	add a condition

Where	Chemical-Formula	*	contains the substring	*	C30	
Where add a condition 💌						

Where	NAME	~	Contains the substrin	g	~	<u>)</u>		
add a condition 💙	Access to Let Gide-Of Access to Right Bate-Of Access to Right Bate-Of Charge Charge Charge Charge		"Appears as product in reaction" is not in th					
and	Tur el obecto	10-12	s-In-Right-Side-Of	*	is greater than	Y	0	
	the number of objects of the number of objects of at least one object of				is production	-		
	every object of exectly one object of for to object of				is smaller than or equ is greater than or equ	of les of les		

□ Find all of the 30-carbon compounds that appear in reactions as products

In database	PlantCyc	~	search for	Compou	unds (2679 instances)		v	rem	o∨e condition	1
Where	Γ	Chemical-Formula	i.	~	contains the substring			✓ C3	0	
and add a cond	v dition 🔽	the number of obj	ects of 💌	Appears	-In-Right-Side-Of	~	is greater than		✓ 0	

Select desired data outputs

Column 1 Sort based on this column	Column 2 ⊠ ○ Sort based on this column		add a column
NAME	Chemical-Formula	~	

Column 1 Sort based on this column		Column 2 🗵 O Sort based on this column	Column 3 🗵 O Sort based on this column	Column 4 🗵 O Sort based on this column		Column 5 ⊠ ○ Sort based on this column	nn		
NAME	~	Chemical-Formula	*	Appears-In-Right-Side-Of	~	Molecular-Weight	~	Names	~

Advanced Query Results Your query in BioVelo is more ([(x1^?NAME, x1^?CHEMICAL-FORMULA, x1^?APPEARS-IN-RIGHT-SIDE-OF, x1^?MOLECULAR-VEIGHT, x1^?NAMES) :: x1<=PLANT^^Compounds. (*C30* instringci x1^CHEMICAL=FORMULA) & ((#x1^APPEARS=IN=RIGHT=SIDE=OF) > 0)].1) This query resulted in a single table of 53 rows. Column 4 for Column 2 for ix1 ^? Column 1 for (x1 *? Column 3 for (x1 ^? APPEARS. 01 12 CHEMICAL. Column 5 for (x1 *? NAMES) NAME IN RIGHT-SIDE-OF) MOLECULAR. FORMULA WEIGHT C30H50O1 (S)-2.3-epoxysqualene = o-amyrin 426.724 a-amyrin, viminalol, alpha-Amyrenol g-amyrin (S)-2.3-epoxysqualene = 8-amyrin C30H5001 426.724 B-amyrin, B-amyrenol **B-amorin** trana cinnamate + coenzyme A # (E)-cinnamoyi-CoA C30H42N7O17P3S1 897.68 (E)-cirnamoyI-CoA (E)-cinnamos/-CoA + H₂O squalene + NADPH + Os = (SI-2.3-(SI-2.3-epoxyspualene, spualene 2.3-epoxide, squalene epoxysqualene + NADP[±] + H₂O, O₂ + a 2.3-axide, (S)-squalene-2.3-epoxide, 2.3-EDSQ. (S)-2.3-epoxysqualene C30H50O1 426.724 reduced acceptor + squalene = (S)-2,3-2.3 epoxisqualene, oxidospualene, 2.3 oxidosqualene epoxysqualene + H₂O + an acceptor 24-methylenelophenol + S-adenosyl-24 ethylidenelophenol, (Z) 24 ethylidenelophenol, L-methionine = 24-ethylidenelophenol + 426.724 24 othylidenelophenol C30H50O1 **Ctrostacienol** S-adenosyl-L-homocysteine 4.4-dimethyl-14g-hydroxymethyl-5g-cholesta-8.24-dien-3B-ol + NADPH + 4.4-dimethyl-14p-formyl-4.4-dimethyl-14o-formyl-5o-cholesta-8.24-dien-38-ol C30H48C2 440.708 Op = 4.4-dmethyl-14g-formyl-5g-cholesta-5p-cholesta-8,24-dien-38-ol 8.24-dian-38-ol + NADP⁴ + 2 H₂O lanosterol + NADPH + Os = 4.4-dimethyl-4.4-d-methyl-4.4-dimethyl-14p-hydroxymethyl-5p-cholesta-14a-hydroxymethyl-C30H50C2 14o-hydroxymethyl-5o-cholesta-442.724 8.24-dien-38-ol 5o-cholesta-8.24 dien-38 of 8.24-dian-38-ol + NADP⁴ + H₂O 1-methylpyrrolidine-2-acetyl-CoA + 4-(1-methyl-2-pyrrolidinyl)-3-4-(1-methyl-2-pyrrolidinyl) 3-pyrobut anovi-CoA. acetyl-CoA = 4-(1-methyl-2-pynolidinyl)-3-C30H49N8O18P3S1 934,741 oxobutaney/ CoA N-methyloyrrolidineacetoacetyl-CoA oxobutanovi-CoA + coenzyme A coenzyme A + 4-coumarate + ATP = 4-coumaroyl-CoA, p-coumaryl-CoA, 4-coumaroyl-CoA, 4 coumarov/ CoA C30H42N7/018P3S1 913 679 4-coumarovI-CoA + diphosphate + AMP coumarovil CoA, p-coumarovil CoA

• Other queries?

- Identify all of the "glycosyltransferase" <u>enzymes</u> associated with more than two reactions in AraCyc
 - List their:
 - name
 - subcellular localization
 - molecular weight
 - inhibitors, activators, etc.
- Find all of the <u>biochemical pathways</u> in PoplarCyc that have more than 5 reactions and where at least one of those reactions lacks enzymes
 - List their:
 - name
 - reactions
 - citations and evidence codes
- These searches can be used to span more than one PMN database
- What if I only have a gene or protein sequence?

PMN BLAST 2.2.8

lease note th Blast	PlantCyc Enzyme: 1-aminocyclopropane-1-carboxylate synthase		
BLAST	Species: Acabidopsis thaliana col		-
Datase	Summary: When recombinantly expressed in E. coll, this enzyme was shown to have ACS activity [<u>Yemagam03</u>]	Score	E
query s	Gene: ACS11	(bits)	Value
	Sequence Length: 1825/3 AAs	921	0.0
	Unification Links: Phytozome Plant Orthologs AT4G08040.1	652	0.0
Upload	Gene-Reaction Schematic:	652	0.0
Raw, FJ	4.4.1.14 AC-AC511	633 632 631	0.0
Advanced B	Enzymatic reaction of: 1-aminocyclopropane-1-carboxylate synthase	631 619 613	0.0 e=176 e=176 e=176
Results Ret		613 538 526	e-176 e-154 e-150
Output Title:	S-adenosyl-L-methionine <=> S-methyl-5-thioadenosine + 1-aminocyclopropane-1-carboxylate	526	e-150
E-mail addr	The reaction direction shown, that is, A + B <==> C + D versus C + D <==> A + B, is in accordance with the Enzyme Commission system.	524 520	e-145 e-145
Return Resi	Reversibility of this reaction is unspecified.	513	e-146
Result Form		503	e-143 e-143
Please be p	In Pathways: ethylene biosynthesis from methionine	500	e-142
Selecting an	Citations: [Yamagami03.]	498	e-142
-	COCKERS & Diant Care STRUCTURE REPORTS & ADDRESS & ADDRE	414	e-116
	QSGYYO PlantCyc: ATSG51690-NONOMER aromatic-amino-acid QS70P9 PlantCyc: ATSG51690-NONOMER aromatic-amino-acid	392	e-110 e-110

Use species selection tool on pathway pages

Use general Comparative Analyses tools

Pat	hway Class	Pathway Class: Biosynthesis - Amines and	Polyamines I	Biosynthesis	AraCyc cel	P. trichocarpa
Biosynthesis		glycine betaine biosynthesis III (plants)	X	X		
- Amines and Polyamines E	Diosynthesis	putrescine biosynthesis by agmatinase	X			
- Amino acids Biosynthesis		putrescine biosynthesis II		X		
- AminoacyHtRINA Charging		putrescine biosynthesis IV	X			
- Aromatic Compounds Bio		putrescine biosynthesis via A-carbamoy/putr	escine		X	X
Carbohydrates Biosynthes		spermidine biosynthesis			X	X
- Cell structures Biosynther		spermine biosynthesis	X	X		
- Cefactors, Prosthetic Gro	and the second se	UDP-N-acetyl-D-glucosamine.biosynthesis			X	X
- Fatty Acids and Upids Bid		urate biosynthesis		8	X	
Hormones Biosynthesis		25 12				
Metabolic Regulators Bio	motherin		1			
 Nucleosides and Nucleot 	1	Pathway Heles	AraCyc col	P. trichecarp	a	
Other Biosynthesis	Number of Path		435	646	-	
- Polysaccharides	And the second of the second s	as a percentage of total reactions in pathways	and the second s	45%	-	
Secondary Metabolism	Pathways with		180	93	-	
 Secondary Metabolites B 	Pathways with		80	76	-	
 Siderophore Biosynthesis 	Pathways with		46	43	-	
Siderophore Biosynthesis	Pathways with		13	22	-	
Degradation/Utilization/Acc	Pathways with		12	14	-	
- Alcohols Degradation	Pathways with		Z	9	-	
Aldehyde Degradation	Pathways with		20	28	-	
Amines and Polyamines	and the second se	with Holes	178	192		

Use Phytozome links on enzyme pages

~	h	ytozo	ъщо "ЗСІ 5 Join	t Genom	e Ins	titut	æ	C I	G (Cent	er fo	or In	tegr	ative	e Ge	nom	ics	
۲ V	11	γι υΖι	Home Search BLAST	Info	•		Bi	oMar	t	$) \subset$		Help)					
Cluster		NODE	DESCRIPTION	14	2	Mar N	Ser all	A Star	A AN	10.10	a man	No. No.	1	Contract of the second	0	2	C.	No. of Contraction
p @	29	Embryophyte	Hypothetical gene (#12631508)	5	7	1	2	1	1	5	3	2	1	1		-	-	
D.C.	29	Tracheophyte	Hypothetical game (#11859730)	5	7	1	2	1	1	5	3	2	1	1				
0 8	29	Viridiplantae	Hypothetical gene (#12842074)	5	1	1	2	1	1	5	5	2	1	1		8		
D.R.	29	Angiosperm	Hypothetical gene (#11815242)	5	7	1	2	1	1	5	3	2	1	1				
0 R	25	Rosid Pre Hexisploidy	Hypothetical gene (#11584487)	5	7	1	2		-	5	3	2				-		
, ®.	25	Rosid Post Hexaploidy	Hypothetical gene (#11490762)	5	7	1	2	-	- 1	5	3	2						
o®,	3	Eurosid II	Hypothetical gene (#11400144)	1			1			1		4				1		
□ ®	2	Arabidopsis	ACS11 (1-Amino-cyclopropane-1-carboxylate synthese 11); 1-aminocyclopropane-1-carboxylate synthese	1						1								3

Comparing across species

Overview of the AraCyc Metabolic Map

This diagram provides a schematic of all pathways of AraCyc metabolism in t metabolite (see key to right). Lines represent reactions. Move the mouse over page or a related pathway page. • Instructions • Pathway Tools query page • Oracs Viewer: Paint oracs data onto this diagram • Species Comparison. Highlight reactions shared with other organisms	The anacyc database Nodes a me Select one or mo □ PlantCyc ☑ Po Submit Clear	olte icon to na pulus trichocarpa	ndicating class of righte to the metabolite

Comparing across species

- Overlay "pre-cleaned" data sets on a metabolic map
 - Gene transcription data
 - Proteomic data
 - Metabolomic data

Case study: Analyzing an Arabidopsis mutant with "no phenotype"

- Basic phenotypic analyses do not reveal any differences:
 - growth
 - development
 - response to hormones
 - □ etc.
- Perform a microarray analysis
 - Measure transcript levels in wild-type and mutant plants

Clean and process data

- Remove genes expressed below background levels
- Measure fold-increase or decrease in mutant vs. wild-type
- Discard statistically insignificant data

Do these transcript differences highlight possible metabolic perturbations?

Ξ.	E PMN_workshop_part_2_data_tile.tet - Netspad	
		0.2016.201
	> All genes with significantly altered expression levels in cam1-1 mutants relative to will opene schange in expression in com2-1 mutant relative to will type	td type A
	afine schange in expression in comp-1 mutant relative to will type	
	Afinoesto 1 80 Afinoesto 7 80 Afinoesto 7 473608510 7 473608510 -3 473608100 2 1 > A8 A73631800	
	80 attact 3 560 -3	
	#F3698L00 2	
	> A# AT3635800 3	
	> pen 471633870 - 5	
	AT10 AT2652570 -2 AT10 AT2652570 -5	
	ATTO AT16151800 -6 ATTO AT16151800 -6 ATTO AT16780900 3 ATTO AT16780900 7	
	ATTO AT3655180 -6	
	ATTO ATTACTORS I	
	A110 AT 82 71 10 7	
	ATTO ATJ032260 -5 ATTO ATJ642010 -5 ATTO ATJ06870 30	
	ATTO AT7642010 -1	
	ATTO ATTROOMETO 10 ATTO ATTROOMETO 1	
	1 ATIC 4T36559830 -8	
	Z ATTO AT JOD 56 HO -5	
	AT MAREN D	
	3 ATTG AT 805 07 80 1	
	4 ATTO AT HIS 0210 51 5 ATTO AT HIS 0440 6	
	2. T14Y are loss 6 Flori - 8	
	6 AT20 AF3656785 -E	
	7 AT20 AT3024220 4	
	8 AT90 AT9634220 2	
	A 470 4 196 2282 -2	
	0 AT30 AT3025585 -5	

Upload data in the OMICs viewer

Upload data in the OMICs viewer

P	athway Tools Omics Viewers		1
	Select a dataset.	Arabidopsis thaliana col 💌	1
	File containing experimental data (NOT a URL):	Browse_	
	Do you want to display absolute or relative data values?	Relative 🛩	
	If displaying relative data values, use	 a single data column the ratio of two data columns 	57
	Data values use a:	O-centered scale (e.g. log scale) O 1-centered scale (negative values will be discarded)	
	The items in the first (zeroth) column of your datafile are	Gene names and/or identifiers	

Data column (numerator in ratios):	If using two columns, denominator data column:				
1					
Note: For column numbering purposes, th first potential data column is column num	he first column, which contains the gene name, is column number 0. The ber 1.				

Set display parameters in the OMICs viewer

Choose a color scheme:

Full color spectrum, computed from data provided (default)

Full color spectrum with a maximum cutoff:

Three color display with specified threshold:

Display Type

By default, data values are painted on the cellular overview chart. However an alternative display is to either paint data values on the genomic map, or to generate a table containing all individual pathways which have one or more data values that exceed some threshold (or are less than the inverse of that threshold). To select one of these alternative displays, choose the corresponding option below and specify the threshold if appropriate. Note that if both the cellular and genome overviews are specified, the genome overview will appear in a new browser window (you must have populos enabled for this site or this will not work).

Paint data on cellular oveniew chart (default)

Paint data on genome overview chart

Generate a table of individual pathways exceeding threshold: 4

Submit Note that this request will take several minutes to complete (possibly longer for large datasets). For aster operation, install Pathway Tools on your own computer Click here for details.

Arabidopsis thaliana col Pathway: trans-lycopene biosynthesis

VisL			-		
Number of values: 71 67 Minimum value: -10 -10 Maximum value: 11 11 Median: 1.0 1.0 Mean: 77/71 76/67	Visı				
Number of values: 71 67 Minimum value: -10 -10 Maximum value: 11 11 Median: 1.0 1.0 Mean: 77/71 76/67	11				
Number of values: 71 67 Minimum value: -10 -10 Maximum value: 11 11 Median: 1.0 1.0 Mean: 77/71 76/67	İ		-		+
Number of values: 71 67 Minimum value: -10 -10 Maximum value: 11 11 Median: 1.0 1.0 Mean: 77/71 76/67	-	Data Statistics	All Genes	Overview Genes	
Maximum value: 11 11 Median: 1.0 1.0 Mean: 77/71 76/67	~	Number of values:			- 1
Maximum value: 11 11 Median: 1.0 1.0 Mean: 77/71 76/67		Minimum value:	-10	-10	
Median: 1.0 1.0 Mean: 77/71 76/67	8	Maximum value:			
Mean: 77/71 76/67		Median:	1.0	1.0	0.00
		Mean:	77/71	76/67	
	0				

The mutant with <u>"no phenotype"</u> has

- decreased levels of transcripts related to phospholipid biosynthesis
- elevated levels of transcripts related to carotenoid biosynthesis
- **Future targeted experiments can be planned!**

- Many applications
- View changes in transcript, protein, or metabolite levels related to:
 - Mutant phenotype
 - Biotic stresses
 - Abiotic stresses
 - Natural variation
 - Developmental stage
 - Tissue type
- Display static measurements or changes over time
 - Animation feature is available

Get pathway data sets from pathway pages

Obtain large data sets

		PMN: Complete [Database Download		
		Welcome to PMN	and AraCyc users!		
Approximately	member wil	after you agree to the t I review your request a ave any questions plea	and email you downlo	ad instructions.	ted form, a sta
Title					
Name *					
Email*	Money	and and	and proteins	10000	
Repeat your en	-dames	Correlation graph	Torottigendrafiren Toriko	Transporters	
institution *	dubridates	- patronys	and resultions	- anounts	
Department	angrups angrups angrups	pronoters protophs protophs	reactore-deel	000001 File 13,873 HD	

Data formats include:

ocelot, Biopax (OWL), SBML, .dat

Install a local copy of the Pathway Tools software

Desktop version offers additional features

Pathway Tools wersion 12.5					2168
Pile Overviews Pathway Reaction Protein RNA I	Sene Compound Chromo	some Tools Hele			
Populus trichocarpa	• Home Bac	k Connect R	istory	Clone	Save DB
		ulus trich	1		
	Generate Pathway E-lat	Ince Report	Generate Pattoray	Haie Report	
Replicon	Total Genes	Protein Genes	RNA Genes	Preudagenes	Size (hp)
Chromosome 1	271	271	0	0	
Chromosome 2	237	237	0	0	
Chromotome 3	149	149	0	0	
Chromosome 4	114	114	0	0	
Chromosome 5	156	156	0	0	
Chromosome 6	175	175	0	0	

Trace metabolites through metabolic pathways

Ones Veveral Overlay Experimental Data from Oner All Highlighting	Invest History Red Access Close
Show Callular Overviewe CTRL Show Key Show/Hide Transport Links He/Adv Metabolite Tracing Frent as Poster Lipidate	AN INSTABULTE Tracing Centrols
Show Camplete Regulatory Overview CTRL Highlight Genes Redisplay Highlighted Genes Only Zoom Regulatory Overview Preferences for Regulatory Overview Store Regulatory Key Code Save Current Regulatory Overview to File Load Regulatory Overview from File	
Show Genotee Overview CTRL Highlight Genes by Substring	

- Coming soon . . . create and work with "groups" of objects
 - For some AraCyc pathways and other plant metabolic pathways, you can create and work with groups of objects NOW at:
 - MetNetDB: http://metnet3.vrac.iastate.edu/index.php

Creating new PMN content

- Manual curation
 - Entering experimental data
- Computational prediction

PA Plant Meta	AN ibolic Netwo	ork	99 	-95 (ord [Pk	antCyc v	search
About PMN	Search	Teols	Downloads	Useful Sites	Submit Data	Help	Feed
Contact Us		Data Su	bmission		Feedback For	-	
Contact Info Feedback Form Submit Data		• We v • You v • Or, ju	velcome any and all can also correct an • Not sure what two Try using one of o	new data submis existing pathway es of information b our data submissio	tabases, including sions related to plan p include? in / correction form e-mail to curator@	nt blochemical (s below.	pathways.
			ssion / correction fr				
					our futorial for help) ou can easily provid		
		Compound				2011	
		Enzyme / Re	action form				
		Pathway for	m				

About Film	Inarch	Teste	Dearlinets	Beefid Stire	Extend Date	Bally	Terrified.				
Project Overview	- 100 AU				a construction of the second		1.000				
Becumentation	2.	PMN Co	ontributors								
Presentations	N										
Statistics.					of to inchelped to imp to that are part of the		d of Arecory				
Selecte Bellen		PlaneLyc, an	o the other Prant, y	C-Derived Estabulate	t that are part of the	-					
Contact Info					editorial bound and ing the content of Pla						
Brent			ned databases the			entrys, where a	00 EM 00 M				
THE OWN					haran maran	1201					
Comporters	5-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				uppendons and rev als for help from the						
Contributors		• 0am	e have alterated as	aloral jamborees.							
Collected Reserved											
		General Ass	etimin .								
		· 8/8	on - Keypere, The	Nationality							
			Poolman-Oxford I Reviant - University								
			Consideration - Constant	and or Crow, Cas	MARKED .						
		Contributors	to Pathways of Pa	incorp and Second	ary Metabolican						
		Extenary.Med	atotas								
		Andres and									
		• 3055	Jateska - Migmai 1	win, Litta							
		Amino Acido									
		· /////	Joshi - Consell Link	renals; office							
		Carbobyitut									
		• Chris	Applies Contraction University	te de Olympiciolo	e Structurate et Along	Bornelle, Franc	•				
			soutottai: Groeps,								
			Agawi - Michigan S ek Lagarias - Diniw								
		+ Rsb1	Last-Michipen Stel	MOU Manager USA							
			is Mench - Universit 5 Diver - Aneo State		THE R. S. L.						
					at Technologies et	Sciences pour a	e Huant, France				

Creation of new PMN databases

New sets of DNA sequences become available

- Genomes are sequenced
- Large EST data sets are created
 - Unigene builds are generated

PMN pipeline predicts enzyme functions

Performed using computer algorithms based on sequence similarity

Set of predicted enzymes is used to predict metabolic pathways

- The pathway program (Pathologic) uses:
 - Enzyme functional annotations
 - A reference set of pathways (e.g. PlantCyc)

Curators validate predicted pathways in the new database

Curators remove incorrect information and add additional data

Creation of new PMN databases

Creation of new PMN databases

- BeanCyc will be added to the PMN databases
- BeanCyc enzymes will be added to PlantCyc

How can you put the PMN to work for you?

- Learn background information about particular metabolic pathways
- Create customized metabolic data sets
- Compare metabolism across plant species
- Analyze experimental OMICs data in a metabolic context
- Manipulate and study data offline
- Create new metabolic pathway databases

We are here to help: www.plantcyc.org

- Please use our data
- Please use our tools
- Please help us to improve our databases!
- □ Please contact us if we can be of any help!
 - Stay around for the help session from 8-9 PM
 - Visit the PMN poster #322
 - Make an appointment to meet with me during the conference
 - Sign-up on sheet in the back of the room
 - Send an e-mail

curator@plantcyc.org

www.plantcyc.org

We are here to help: www.plantcyc.org

PMN Acknowledgements

Peifen Zhang (Director) Sue Rhee (PI) Eva Huala (Co-PI)

Current Curators:

- A. S. Karthikeyan (curator)

Recent Past Contributors:

- Christophe Tissier (curator)
- Hartmut Foerster (curator)

Collaborators:

- Peter Karp (SRI)
- Ron Caspi (SRI)
- SRI Tech Team
- Lukas Mueller (SGN)
- Anuradha Pujar (SGN)
- Gramene and MedicCyc

Tech Team Members:

- Bob Muller (Manager)
- Larry Ploetz (Sys. Administrator)
- Raymond Chetty
- Anjo Chi
- Vanessa Kirkup
- Cynthia Lee
- Tom Meyer
- Shanker Singh
- Chris Wilks

National Science Foundation

We are here to help: www.plantcyc.org

- Please use our data
- Please use our tools
- Please help us to improve our databases!
- □ Please contact us if we can be of any help!
 - Stay around for the help session from 8-9 PM
 - Visit the PMN poster #322
 - Make an appointment to meet with me during the conference
 - Sign-up on sheet in the back of the room
 - Send an e-mail

curator@plantcyc.org

www.plantcyc.org

What is in the PMN?

- Databases focus on "small" molecule metabolism
 - "Small"
 - No strict standards
 - Generally exclude macromolecules that are built using <u>templates</u>
 - "Large" molecules <u>Not In</u> the PMN:
 - chromosomes, proteins (as substrates), mRNA transcripts
 - but the building blocks of macromolecules are included
 - nucleotides and amino acids are in the PMN
 - "Large" molecules <u>In</u> the PMN:
 - cellulose
 - rubber
 - homogalacturonan / pectin