Accessing information in plant metabolic pathway databases at the PMN, Gramene, and SGN

<u>Part I:</u> Contents, Search Strategies, and Data Sharing Opportunities kate dreher, PMN / TAIR - www.plantcyc.org

<u>Part II:</u> Pathway Networks for Cereals <u>Palitha Dharmawardhana, Gramene</u> - www.gramene.org/pathway

<u>Part III:</u> Using the desktop version of the Pathway Tools software Lukas Mueller, SGN – solcyc.solgenomics.net

Part I overview

- Introduction
- Data
- Search tools
- Data submissions
- Acknowledgments
- More examples

Plant metabolism

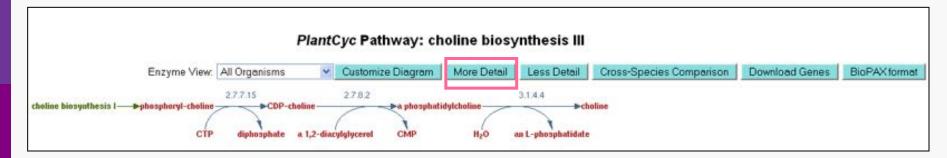
- Plants provide crucial benefits to the ecosystem and humanity
- A better understanding of plant metabolism may contribute to:
 - More nutritious foods
 - New medicines
 - More pest-resistant plants
 - Higher photosynthetic capacity and yield in crops
 - Better biofuel feedstocks
 - Improved industrial inputs (e.g. oils, fibers, etc.)
 - ... many more applications
- These efforts require access to high quality plant metabolism data

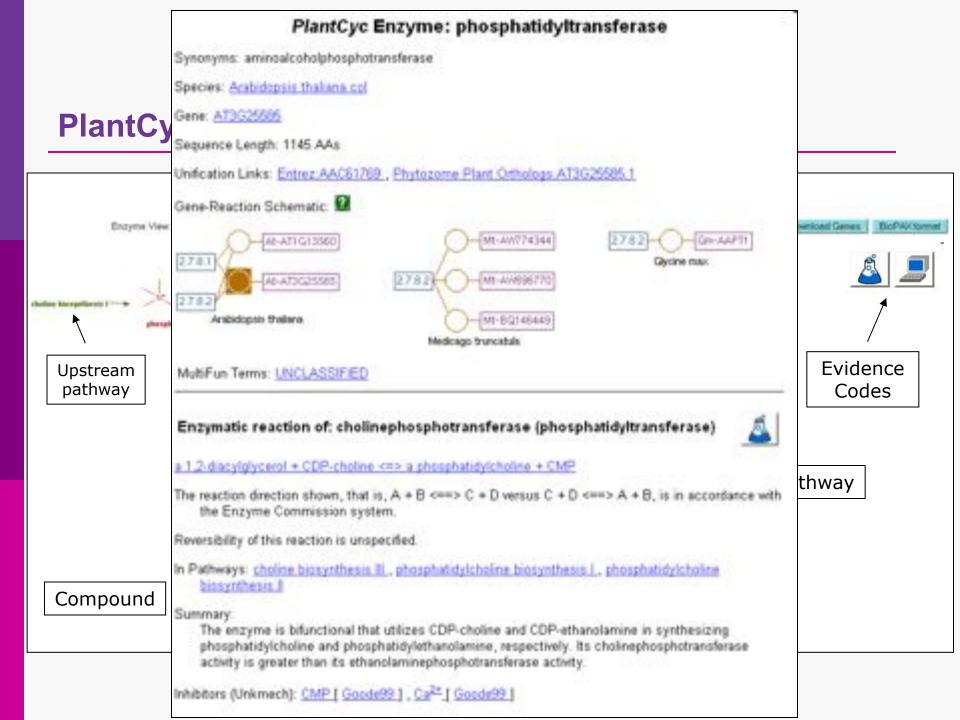
Plant metabolic databases

- Capture and organize published data
- Make metabolic predictions for "new" species
- Facilitate data analysis
- Focus on different aspects of metabolism
 - Pathways
 - KEGG
 - Reactome
 - BioCyc / Pathway tools family

BioCyc / Pathway Tools databases

- Multiple data providers:
 - SRI International
 - Plant Metabolic Network (PMN)
 - Gramene
 - Sol Genomics Network (SGN)


- One software package:
 - Pathway Tools
 - SRI International
 - Common set of data types
 - Common tools
 - Common display modes



Pathway tools pathways

Plant metabolic databases

PGDB	Plant	Source
AraCyc	Arabidopsis	Plant Metabolic Network
PoplarCyc	Poplar	Plant Metabolic Network
PlantCyc	PLANT KINGDOM	Plant Metabolic Network
RiceCyc	Rice	Gramene
SorghumCyc	Sorghum	Gramene
MaizeCyc (beta)	Sorghum	Gramene
BrachyCyc (beta)	Brachypodium	Gramene
LycoCyc	Tomato	Sol Genomics Network
PotatoCyc	Potato	Sol Genomics Network
СарСус	Pepper	Sol Genomics Network
NicotianaCyc	Tobacco	Sol Genomics Network
PetuniaCyc	Petunia	Sol Genomics Network
CoffeaCyc	Coffee	Sol Genomics Network
MedicCyc	Medicago	Noble Foundation

Data curation in databases

PGDB	Plant	Source	Status
AraCyc	Arabidopsis	Plant Metabolic Network	extensive curation
PoplarCyc	Poplar	Plant Metabolic Network	some curation
PlantCyc	PLANT KINGDOM	Plant Metabolic Network	mixed curation
RiceCyc **	Rice	Gramene	some curation
SorghumCyc	Sorghum	Gramene	all computational
MaizeCyc (beta)	Sorghum	Gramene	all computational
BrachyCyc (beta)	Brachypodium	Gramene	all computational
LycoCyc **	Tomato	Sol Genomics Network	some curation
PotatoCyc	Potato	Sol Genomics Network	all computational
СарСус	Pepper	Sol Genomics Network	all computational
NicotianaCyc	Tobacco	Sol Genomics Network	all computational
PetuniaCyc	Petunia	Sol Genomics Network	all computational
CoffeaCyc	Coffee	Sol Genomics Network	all computational
MedicCyc **	Medicago	Noble Foundation	some curation

Database content statistics

■ Plant Metabolic Network

	PlantCyc 4.0	AraCyc 7.0	PoplarCyc 2.0
Pathways	685	369	288
Enzymes	11058	5506	3420
Reactions	2929	2418	1707
Compounds	2966	2719	1397
Organisms	343	1	1*

□ Gramene / SGN

	RiceCyc 3.0	LycoCyc 2.0	PetuniaCyc 2.1
Pathways	339	343	136
Enzymes	9315	5216	294
Reactions	2109	1793	758
Compounds	1592	1379	637
Organisms	1	1	1

Searching in plant metabolic databases

Pathway Tools quick search bar

Quick search results

The guery choline matched the fo

Pathways.

Pathway pages co pathway, of chrom genes, and of regu

- choline biosynthesis !
- choline bipsynthesis II
- choline biosynthesis III
- shosphatidylcholine biosy
- phosphatidylcheline biosy
- ghosphatidylcholine biosy
- phosphatidylchelline biosy
- superpathway of phosphat
- superpathway of choline b

Gene pages contain: Genes depiction of its operor product information is corresponding protein

choline managaygenase

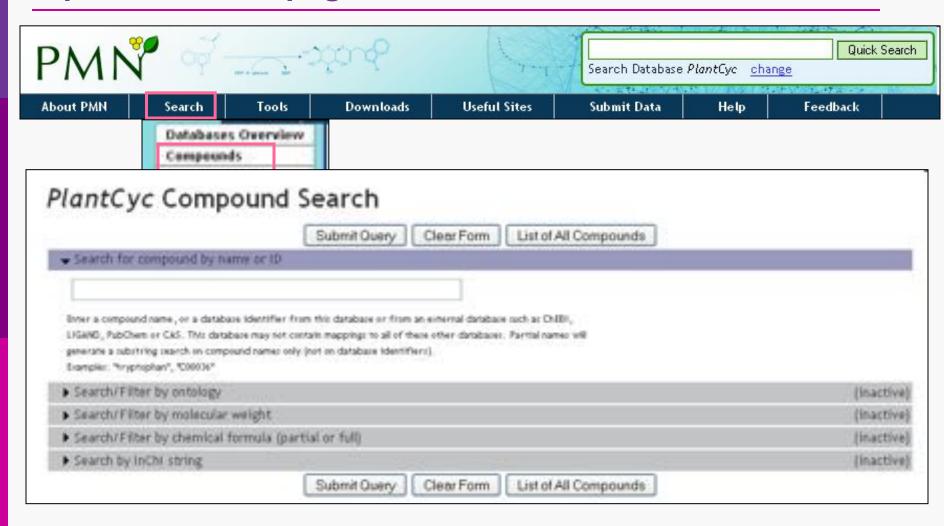
Proteins

Protein pages contain: Detailed comments and citations: subunit structure; cofactors. activators, and inhibitors (for enzymes), depiction of regular (for transcription factors).

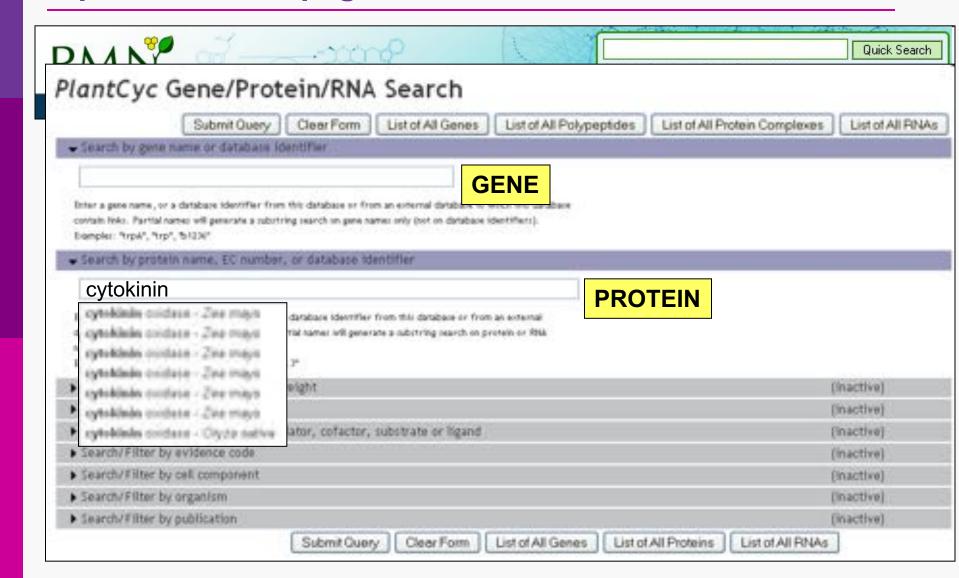
- cheline kinase (pol-
- cheline kinase (pp)
- cheline kinase (pol-
- cheline kinase (pol-
- cheline kinase (pp)
- cheline kinase (pol-
- choline kinase (pol)
- cheline kinase (poli
- CHOLINE MONOOS
- cheline monogxyge
- cheline monogyyse
- choline monooxyp expressed
- choline-phosphate AT2G32260
- choline-phosphate AT4G15130
- choline phosphate. LOC 0s02s07720.1
- cholinephosphate

Compounds

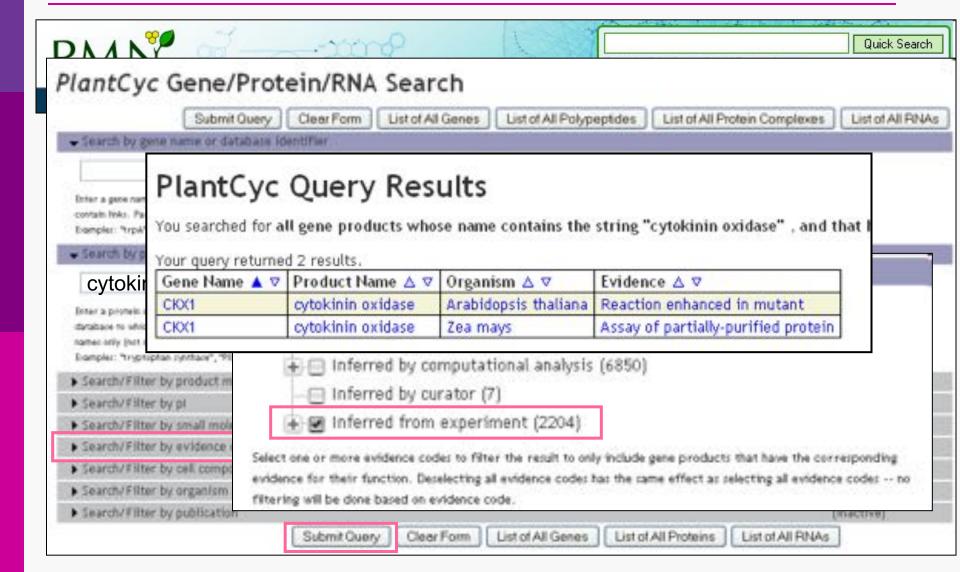
Compound pages contain: compound structural information, and links to all reactions and pathways in which the compound participates


- 16:0-18:1-PC /7-16
- 16:0-18:2-PC /7-16
- 16:0-18:3-PC /1-16
- 18.1-18:1-PC /3-18 3-phosphocholine
- 18.1-18:2-PC /7-1/
- 18:1-18:3-PC://1-18
- 18:2-18:1-PC /1-18
- 18:2-18:2-PC //1-18 3-phosphocholine
- 18.2-18:3-PC //1-18
- 18.3-18.1-PC /1-18
- 18:3-18:2-PC /1-18
- 18:3-18:3-PC /1-18
- choline
- O-sinapoylcholine
- Sn-3-glycerophosphocholine a 1-acyl-2-lyso-glycerophosphocholine
- a 1-alkyl-2-acetyl-an-plycero-3-phosphocheline
- a 1-alkyl-an-plycero-3-phosphocheline
- a 1-lyso-2-acyl-an-plycero-3-phosphocholine
- a 1-organyl-2-acyl-so-glycero-3-phosphocholine
- a 2-lysophosphatidylcheline

Reactions

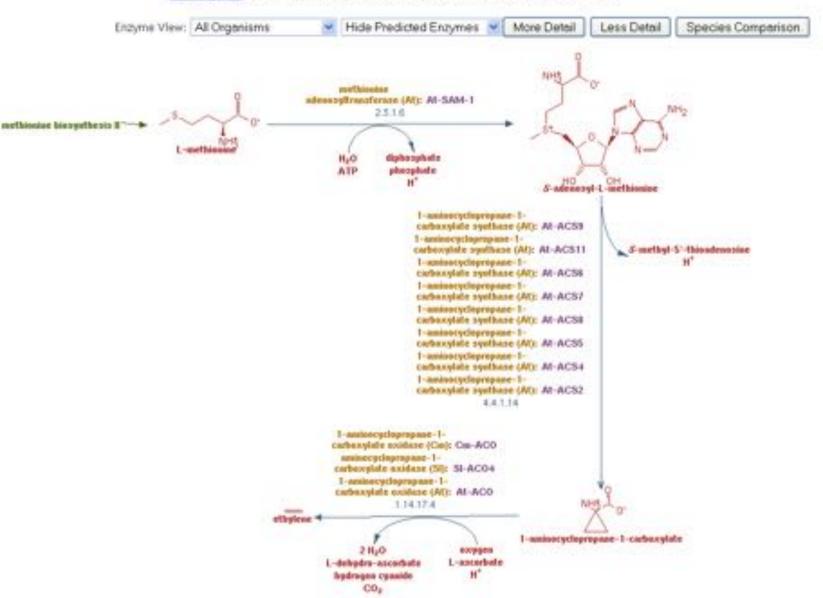

Reaction pages contain: reaction equation with chemical structures, links to all enzymes that catalyze the reaction, and all pathways in which the reaction participates.

- 1-O-sinapovi-B-D-glucose + chelline = O-sinapovicholine + B-D-glucose
- choline + ATP = phosphoryl-choline + ADP
- a 1.2-diacylglycerol + CDP-choline = a phosphatidylcholine + CMP
- a phosphatidylcheline + H₂O = a 1-acyl-2-lyspglycerophosphocholine + a carboxylate
- a phosphatidylcheline + HyO = an L-phosphatidate + choline
- phosphoryl-choline + CTP = CDP-choline + diphosphate


Specific search pages

Specific search pages

Specific search pages



PMN BLAST 2.2.8

PlantCyc Pathway: ethylene biosynthesis from methionine

392

Searching by topic / keyword

Arabidopsis thaliana col Enzyme: abscisic acid glucose ester 8-glucosidase

Gene: BG1 Accession Number: AT1G52400 (AraCyc)

Synonyms: ABA-GE 8-glucosidase

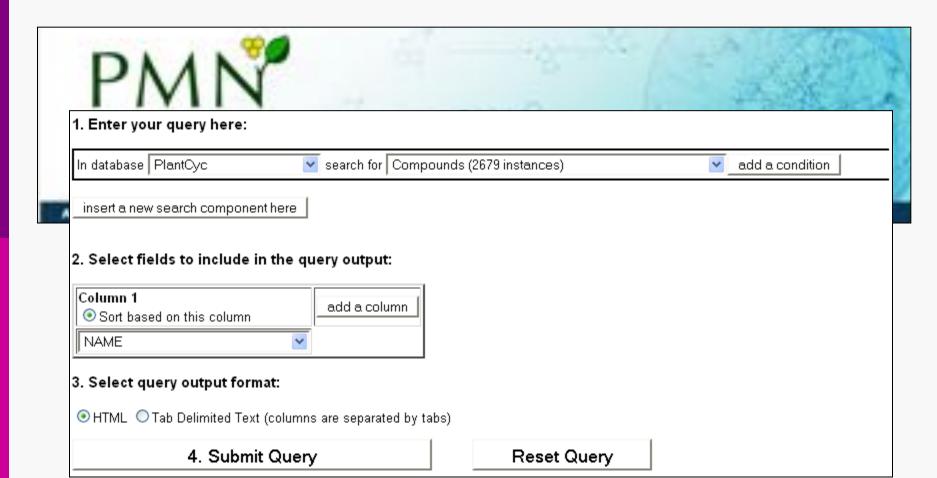
Summary:

The BG1 glucosidase appears to play an important role in releasing free biologically active (*)-abscisate (ABA) from the inactive abscisic acid glucose ester (ABA-GE), particularly in response to dehydration stress. Consequently, mutant plants lacking BG1 have decreased levels of free ABA compared to wild type plants following a dehydration stress treatment. In addition, extracellular levels of ABA appear to be reduced in plants that lack BG1 [Leebsb].

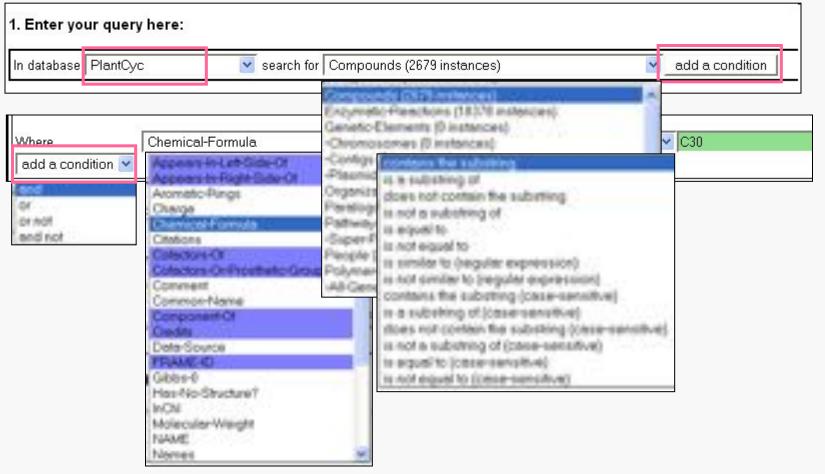
Transcripts for this enzyme are up-regulated by conditions normally associated with increased ABA production, including NaCl and drought stress [LeeO6b]. And, mutant plants lacking BG1 lose more water through transpiration, have defective stomatal closure in the dark, and are less tolerant of dehydration than comparable wild type plants [LeeO6b].

Further analyses of the BG1 protein in vibro indicate that it does not act on zeatin glucose ester and that the glutamic acid at position 207 is important for its enzymatic activity toward ABA-GE [LeeOsb]. In addition, BG1 homooligomerization, which happens in response to dehydration stress, appears to increase the enzymatic activity of the enzyme, and low molecular weight forms have a ~4-fold lower specific activity than high molecular weight forms. Based on the apparent molecular weight of 600 kDa of the major BG1 complex detected in dehydration-stressed plants, BG1 likely forms a homooligomer of 10 units [LeeOsb].

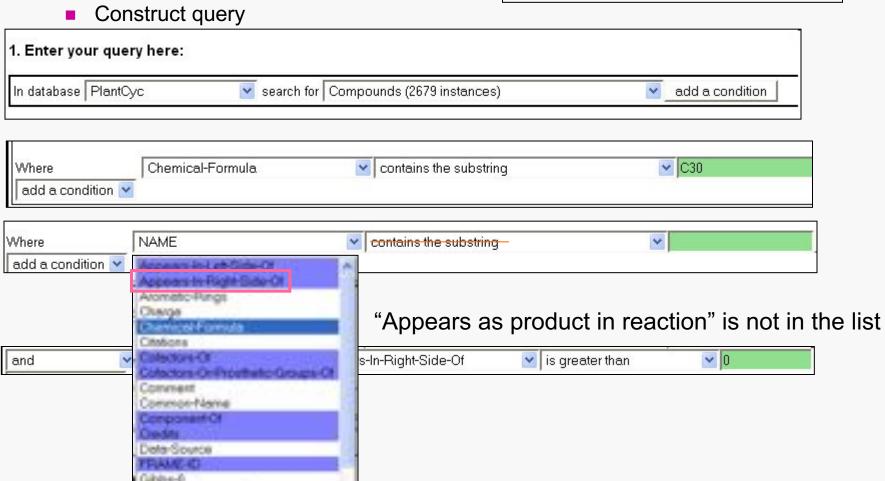
The enzyme was originally shown to be glycosylated and targeted to the endoplasmic reticulum [LeeOsb]. Later work indicated that the protein goes to a new organelle named the ER body [Yamada09]. Interestingly, ABA-GE is believed to accumulate in plant vacuoles and outside of the cell walls raising the question of how BG1 encounters the substrate within the cell [Dietz00 , LeeOsb]. Currently, it is hypothesized that ABA-GE transporters may promote the release of this compound to the ER upon dehydration stress [LeeOsb].

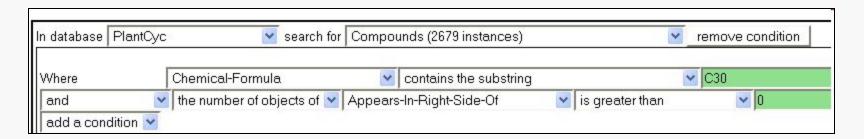

Citations: [KatoNoguch08]

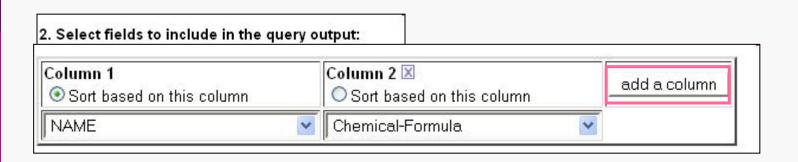
Locations: endoplasmic reticulum [LeeO6b]


Map Position: [19,518,820 -> 19,521,880] (64.14 centisomes) on CHROMOSOME 1

Uniffication Links: Phytozome Plant Orthologs: AT1G52400.1, TAIR: AT1G52400, UniProt: Q95E50


- Advanced search page
 - Allows the construction of very complex queries


- □ Find all of the <u>30-carbon compounds</u> that appear as products in reactions
 - Construct query


□ Find all of the <u>30-carbon compounds</u> that appear as products in reactions

Find all of the 30-carbon compounds that appear in reactions as products

Select desired data outputs

Advanced Query Results

Your query in BioVelo is mort ([(x1^?NAME, x1^?CHEMICAL-FORMULA, x1^?APPEARS-IN-RIGHT-SIDE-OF, x1^?MOLECULAR-VEIGHT, x1^?NAMES) : x1<-PLANT^Compounds. (*C30* instringe: x1^CHEMICAL-FORMULA) & ((#x1^APPEARS-IN-RIGHT-SIDE-OF) > 0)].1)

This query resulted in a single table of 53 rows.

Column 1 for (x1 *? NAME)	Column 2 for (x1 ^? CHEMICAL- FORMULA)	Column 3 for (x1 *? APPEARS- IN-RIGHT-SIDE-OF)	Column 4 for (x1 *? MOLECULAR- WEIGHT)	Column 5 for (x1 ^? NAMES)
g-amyrin	C30H50O1	(S)-2,3-epoxysqualene = o-amyrin	426.724	o-amyrin, viminalol, alpha-Amyrenol
D-amyrin	C30H50O1	(S)-2.3-epoxysqualene = β-amyrin	426.724	B-amyrin, B-amyrenol
(E)-sinnamoyl-CoA	C30H42N7O17P3S1	trana-cinnamate + coanzyme A = (£)-cinnamayl-CoA + H ₂ Q	897.68	(E)-cirnamoyl-CoA
(S)-2.3-epoxysqualene	C30H50O1	squalene + NADPH + O ₂ = (S)-2.3- eponysqualene + NADP [±] + H ₂ O, O ₂ + a reduced acceptor + squalene = (S)-2.3- eponysqualene + H ₂ O + an acceptor	426.724	(S)-2.3 epoxysqualene, squalene 2,3 epoxide, squalene 2,3 oxide, (S)-squalene-2,3 epoxide, 2,3 EDSQ, 2,3 epoxisqualene, oxidosqualene, 2,3 oxidosqualene
24 ethylidenelophanol	C30H5001	24-methylenelophenol + S-adenosyl- L-methionine = 24-ethylidenelophenol + S-adenosyl-L-homocysteine	426.724	24-ethylidenelophenol, (Z)-24-ethylidenelophenol, citrostadienol
4.4-dimethyl-140-formyl- 50-cholesta-8.24-dien-38-ol	C30H48O2	4.A-dmethyl-14a-hydroxymethyl- 5a-chalesta-8.24-dien-3B-al + NADPH + O ₂ = 4.A-dmethyl-14a-formyl-5a-chalesta- 8.24-dien-3B-al + NADP ⁴ + 2 H ₂ O	440.708	4.4-dimethyl-14o-formyl-5o-cholesta-8.24-dien-38-ol
4.4-dimethyl: 14o-hydroxymethyl: 5o-cholesta-9.24-dien-38-ol	C30H5002	lanosterol + NADPH + O ₂ = 4,4-dimethyl- 14α-hydroxymethyl-5α-cholesta- 8.24-dien-3β-αl + NADP ² + H ₂ Q	442.724	4.4-dimethyl-14p-hydroxymethyl-5p-cholesta- 8.24-dien-38-ol
4-(1-methyl-2-pymolidinyl)-3- oxobutancyl-CoA	C30H49NBO18P3S1	1-methylpyrrolidine-2-acetyl-CoA.+ acetyl-CoA = 4-(1-methyl-2-pyrrolidinyl)-3- oxobutanoyl-CoA + coenzyme A	934.741	4-(1-methyl-2-pyroldinyl)-3-exobutanoyl-CoA. N-methylpyroldineacetoacetyl-CoA
4-coumaroyl-CoA	C30H42N7O18P3S1	coenzyme A + 4-coumarate + ATP = 4-coumaroyl-CoA + diphosphate + AMP	913.679	4-coumaroyl-CoA, p-coumaryl-CoA, 4-coumaroyl-CoA, coumaroyl-CoA, p-coumaroyl-CoA

Data and software downloads

Install a local copy of the Pathway Tools software

Building better databases together

- To submit data, report an error, or ask a question . . .
 - Send an e-mail: <u>curator@plantcyc.org</u>
 - Use data submission "tools"

- Meet with me individually at this conference
 - Plant Genome Database Outreach Consortium booth: # 427
 - Poster: C891

Building better databases together

- PMN future plans
 - Develop a better enzyme annotation pipeline
 - Predict plant metabolic pathways for many species with sequence data
 - Solicit help from experts who work on different species for pathway validation
 - Remove mis-predictions
 - Add missed pathways

- Potential candidates:
 - wine grape
 - cassava
 - □ Selaginella moellendorfii
 - moss
 - eucalyptus
 - sunflower
 - apple
 - cowpea
 - □ ice plant
 - papaya
 - YOUR FAVORITE SPECIES??

Community gratitude

We

Building better databases together

search	maps	genomes	tools	sol search
Your name Your email Subject Body		Contact SG	N	log in I new user
		Submit		
	Your name Your email Subject Body	Your name Your email Subject	Your name Your email Subject Body Submit	Contact SGN All fields are required. Your email Subject Body Submit

Plant metabolic NETWORKING

- Please use our data
- Please use our tools
- Please help us to improve our databases!
- Please contact us if we can be of any help!

curator@plantcyc.org

www.plantcyc.org

PMN Acknowledgements

Current Tech Team Members:

- Bob Muller (Manager)
- Larry Ploetz (Sys. Administrator)
- Cynthia Lee
- Shanker Singh
- Chris Wilks

Tech Team: alumni

- Raymond Chetty
- Anjo Chi
- Vanessa Kirkup
- Tom Meyer

- Ron Caspi (SRI)
- Suzanne Paley (SRI)
- SRI Tech Team
- Lukas Mueller (SGN)
- Anuradha Pujar (SGN)
- Gramene and MedicCyc

- Other queries
 - Identify all of the "glycosyltransferase" enzymes associated with no more than two reactions in AraCyc
 - List their:
 - name
 - subcellular localization
 - reactions catalyzed
 - Find all of the <u>biochemical pathways</u> in PoplarCyc that have more than 5 reactions and where NADPH is used at least once in the pathway
 - List their:
 - name
 - reactions
 - citations and evidence codes

1. Enter your query here:

uery database Populus brichocorpo	for Pathways (323 instances)	M (let's car	t them [1] remove condition	on .
here the number of objects of 🗷				
Reaction-List (323 values)	🥳 is greater than or equal to 💌 5	_ 8	witch to variable entry	
and stor some obje	d 🗷 in Reaction-List (32) value	s) 💌 of type Genera	litred-Reactions (lefs call the	m 12)
we have for some object	In 22 Enzymatic-Reaction (1134)	relives) 🗵 of type Enzymati	ic-Reactions (let's call them.)	(3)
we have for some object	In 23 Reaction (6138 values)	ef type :	Reactions (let's call them 24)	
we have for some object.	₩ in 24 ₩ Left	of type Chemicals	(lefs call them 25)	
we have	-	= hum		
25 Mame add a condition	🥳 is equal to	₩ NADE	71	Switch to veriable entry
or 💌 tor som	e object W in 24 W Right	of type Che	emicals 🔀 (left cal	I them [26]
we have				
25 Mame	contains the substring	M NACE	PH	Switch to veriable entry
add a condition 🗷				
add a condition 💌				
add a condition 💌				
edd a condition 🗷				
add a condition 💌				

Advanced Query Results

Your query in BioVelo is head-socretarending([(21**MAME, 21**FEACTION-LIST, 21***ICITATIONS) : Z1<***POPLAR***Pathways, 12 := [Z2 : Z2 <- Z1**FEACTION-LIST, [0 < #[Z5 : Z5 <- Z4**LEFT, ("WADPH" instringer Z5**MAME)])] [0 < #[Z5 : Z5 <- Z4**LEFT, ("WADPH" instringer Z5**MAME)])] [0 < #[Z5 : Z5 <- Z4**LEFT, ("WADPH" instringer Z5**MAME)])]]]]], ((#Z1**FEACTION-LIST) >= 5) & (0 < #12)],1) (dick the query to edit it in the Free Form Advanced Query Page)

This query resulted in a single table of 29 rows.

NAME A V	Reaction-List △ ▽	Citations △ ♥
arginine biosynthesis ii (acetyl cycle)	2 ATP + L-glutamine + bicarbonate + H ₂ O = L-glutamate + 2 ADP + phosphate + carbamoyl-phosphate + 4 H ⁴ , L-glutamate + acetyl-CoA = M-acetyl-L-glutamate + coenzyme A = H ⁴ , L-glutamate + N-acetyl-L-omithine = N-acetyl-L-glutamate + L-omithine, N-acetyl-L-glutamate + ATP = N-acetylglutamyl-phosphate + ADP + H ⁴ , N-acetyl-L-glutamate 5-semialdehyde + NADP ⁴ + phosphate = N-acetylglutamyl-phosphate + NADPH + H ⁴ , N-acetyl-L-omithine + 2-ketoglutarate = N-acetyl-L-glutamate 5-semialdehyde + L-glutamate, L-omithine + carbamoyl-phosphate = citrulline + phosphate + H ⁴ , L-arginino-succinate = L-arginine + fumarate, L-aspartate + citrulline + ATP = L-arginino-succinate + diphosphate + ANP + 2 H ⁴	curator09:EV- COMP-HENE:3452886714:pelfenz
ascorbate glutathione cycle	L-ascorbate + O ₂ + 5 H* = monodehydroascorbate + 2 H ₂ O ₁ 2 monodehydroascorbate -> L-ascorbate + L-dehydro-ascorbate + 3 H*, 2 monodehydroascorbate + NADPH + 2 L-ascorbate + NADP* + 3 H*, 2 L-ascorbate + H ₂ O ₂ + 4 H* + 2 monodehydroascorbate + 2 H ₂ O ₁ 2 glutathione + NADP* = glutathione disulfide + NADPH + H*, L-dehydro-ascorbate + 2 glutathione = glutathione disulfide + L-ascorbate + H*	17899442:EV- EXP-IDA:3457189877:dreher, EDJOL:001:EV- EXP-IDA:3457190309:dreher, SHANZHO4:EV- EXP-IDA:3457190309:dreher, Nakagawara84:EV- EXP-IDA:3457190309:dreher
brassinosteroid biosynthesis i	6-deoxotyphasterol + O ₂ = typhasterol + H ₂ O ₃ 60-hydroxy-castasterone = castasterone + 2 H*, 6-deoxocastasterone + O ₂ + 2 H* = 60-hydroxy-castasterone + H ₂ O ₃ 6-deoxotyphasterol + O ₂ + 2 H* = 6-deoxocastasterone + H ₂ O ₃ 3-dehydro-6-deoxoteasterone + 2 H* = 6-deoxotyphasterol, 6-deoxoteasterone = 3-dehydro-6-deoxoteasterone + 2 H*, 6-deoxocathasterone + O ₂ + 2 H* = 6-deoxoteasterone + H ₂ O ₃ campestanol + NADPH + O ₂ + H* = 6-deoxocathasterone + NADP* + H ₂ O ₃ castasterone + NADPH + O ₂ + H* = brassinolide * NADP* = H ₂ O ₃ typhasterol + a reduced electron acceptor + O ₂ = castasterone + an oxidized electron acceptor + H ₂ O ₃ 3-dehydroteasterone + 2 H* = typhasterol, teasterone = 3-dehydroteasterone + 2 H*, cathasterone + a reduced electron acceptor + O ₂ = teasterone + an oxidized electron acceptor + H ₂ O ₃ 6-oxocampestanol = NADPH = O ₂ = H* = cathasterone + NACP* + H ₂ O ₃ (60)-hydroxycampestanol = 6-oxocampestanol = 2 H*, campestanol = a reduced electron acceptor + O ₂ = (60)-hydroxycampestanol = an oxidized electron acceptor + H ₂ O ₃ (50)-campestanol = 2 H* = campestanol, campest 4-en-3-one =	curator09:EV- COMP-HINE:3444506243; achit